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Abstract. State estimation is a fundamental problem in artificial intel-
ligence that involves inferring the state of a system based on available
measurements. We investigate the role an integrated event memory can
play in tackling state estimation of complex domains. Our approach uses
the hybrid event memory developed in our previous work as a case base
within a cognitive architecture, which enables agents to incrementally
learn and represent large joint probability distributions over states as
Bayesian networks. To facilitate near real-time execution of this process
for agents, we extended the event memory system with a rule-based rep-
resentation for encoding large probability distributions in its networks.
After a review of our cognitive architecture and its event memory, we
describe the representational extension before presenting experimental
results demonstrating our system’s ability to scale to large state esti-
mation problems under various partial observability conditions in the
Minecraft domain.
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1 Introduction

State estimation is one of the fundamental problems in artificial intelligence
that involves inferring the underlying state of a system from a set of available
observations. It is essential in many applications, such as robotics [3], machine
learning [12,39], and decision-making [15]. The state estimation problem has
been widely studied in the literature [10,26,34-36], and various methods have
been proposed to address it. However, this problem still poses significant chal-
lenges in complex domains as the number of states and observations can be
prohibitively large. One promising approach for solving this is to use Bayesian
networks [31], which provide a powerful framework for modeling complex systems
and incorporating uncertainty into the estimation process [17,27].

We believe Bayesian networks provide a powerful and flexible framework suit-
able for representing cases, but their usage in this manner have been sparse in the
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case-based reasoning (CBR) literature [32], despite the growing interests in inte-
grating data-driven techniques with CBR methodologies [21]. Instead, Bayesian
networks have typically been used to enhance inference engines supporting exist-
ing CBR systems by capturing general background knowledge about a problem.
In [1,29], for example, Bayesian networks are used to improve similarity assess-
ment by encoding general domain knowledge like relationships about cooking
processes. In [16], the authors present a Bayesian clustering algorithm that uses
prototype exemplars in salient feature subspaces to describe clusters. Clustering
is done in batch using a Bayesian technique, but the clustered objects are the
data samples, from which the prototypes are sourced. Additionally, in [7], the
authors report a context-aware Bayesian CBR system for constructing dynamic
checklists. To form a case, the system augments observed data with the outputs
of naive Bayes inference for estimating answer probabilities.

In contrast, our present work represents cases themselves as Bayesian net-
works in our event memory that acts as a case base. Furthermore, we explore
ways to integrate such CBR systems within a unified theory of cognition, which
is an understudied area of research. Our work makes progress along both of
these fronts by extending our hybrid event memory system introduced in prior
work [24, 25], which is integrated into a cognitive architecture, ICARUS [4]. As
we will show later in this paper, the current extension gives our event memory-
enabled agent the near real-time capability to learn probability distributions of
the state space as Bayesian networks, making it possible to estimate the states
continuously during execution.

In Section 2 below, we will briefly review the ICARUS cognitive architec-
ture and its hybrid event memory. We will start by discussing the architecture’s
knowledge structures that support conceptual inference and skill execution. We
will then describe how its long-term event memory represents cases and operates
over the stored cases for state estimation. After that, in Section 3, we will de-
scribe two extensions to our event memory system that enable faster and more
efficient storage and retrieval of cases, which is essential for near real-time state
estimation in agent settings. In Section 4, we introduce a popular video game,
Minecraft, as our evaluation domain and present experimental results demon-
strating the effectiveness of our approach for state estimation. Finally, we will
review related literature in Section 5 before closing the paper with discussions
of our plans for future work and drawing conclusions in Section 6.

2 Review of IcARUS and its Hybrid Event Memory

Cognitive architectures provide computational infrastructure for modeling gen-
eral intelligence. One such architecture, [CARUS , makes specific commitments
to the representation of knowledge, their organization of memories, and various
processes that work over these memories. ICARUS shares some of these with other
architectures like ACT-R [2], SOAR [19,20], and CLARION [37]. The common
features include the distinction between long-term and short-term memories, its
use of relational pattern matching to access long-term contents, and the cognitive
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processes that occur through recognize-act cycles, to name a few. But ICARUS
also makes more distinctive assumptions like the hierarchical organization of
long-term knowledge, its grounding of cognition on perception and action, and
the structural distinction of categories and procedures. Some of these appeared
elsewhere in the cognitive systems literature over time, but only the ICARUS ar-
chitecture makes a continuous commitment to this set of features and integrates
them in a unified manner.

2.1 Conceptual and Procedural Memories

IcArus distinguishes between long-term knowledge and short-term contents,
and between categorical and procedural knowledge. The architecture organizes
these using distinct representations and stores them in separate memories. Its
long-term conceptual memory houses definitions of categories, or concepts, that
are similar to Horn clauses [11] and describe different relational situations, while
a long-term skill memory stores definitions of procedures, or skills, that can be
considered as hierarchical versions of STRIPS operators [5] and specify ways to
achieve certain situations.?

Table 1 shows some sample concepts for the Minecraft domain. The first
concept, carrying, describes a situation where the agent has a non-zero amount
of an object type in its possession. This concept refers to a perceived object,
hotbar, and its attributes, but it does not rely on any other concept, making
it a primitive concept. The second concept, however, is a non-primitive one,
which refers to other concept instances like resource, right_of, left_of, and
carrying in addition to a perceived object, self. This concept depicts a situa-
tion where the agent and a resource object is vertically aligned and the agent is
not in possession of the object.

Similarly, Table 2 shows two sample skills. The first skill, make_torch, de-
scribes the procedure of making a torch out of a stick and a coal, simply by
executing a direct action *make in the world. This primitive definition includes
conditions for its execution, the action to take, and its effects, but it does not
involve any other skill instances. But the second skill, craft_torch, defines a
complex procedure that involves gathering necessary resource before attempting
to make a torch using the first skill, making it non-primitive.

IcARUS places the instances of its concepts and skills in respective short-
term memories. Its belief memory stores inferred concept instances, or beliefs,
that the agent believes to be true at any given time. A short-term goal memory
houses instantiated top-level goals and subgoals, along with the corresponding
skill instances, or intentions of the agent for the goals.

3 In addition, there is another storage, a long-term goal memory, for the ICARUS agent’s
top-level goals and their relevance conditions, which are described using generalized
concepts. But this memory and the goal reasoning process that works over it is not
relevant to the current discussion.
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Table 1: Sample ICARUS concepts for the Minecraft domain.

((carrying 7ol “type 7type “location 7loc “size 7size)
:elements ((hotbar 7ol type 7type location ?loc size 7size))
:tests ((> 7size 0)))

((on_vertical_axis 7ol 7self)
:elements ((self 7self))
:conditions ((resource 7o1l)
(not (right_of 7ol ?7self))
(not (left_of 701 7self))
(not (carrying 701))))

Table 2: Sample IcARUS skills for the Minecraft domain.

((make_torch)
:conditions ((carrying 7ol “type 7t1l)
(carrying 702 “type 7t2))
:tests ((eq 7tl ’stick)
(eq 7t2 ’coal))
:actions ((*make "torch"))
:effects ((carrying 7torch “type torch “location ?1 “size 7s)))

((craft_torch)
:conditions ((resource 702 “type coal)
(resource 703 “type stick))
:subskills ((gather_resource 703 stick)
(gather_resource 702 coal)
(make_torch))
:effects ((carrying 7torch “type torch ~location ?1 “size 7s)))

2.2 Inference and Execution

The ICARUS architecture operates in recognize-act cycles. As shown in Figure 1,
the system first receives sensory data from its environment in its perceptual
buffer and subsequently infers concepts that are true in the current situation.
This inference process applies to primitive concepts first, finding all instances of
these concepts that hold based on perceived objects and their attributes. Then
the system infers non-primitive concept instances that refer to objects and other
concept instances.

Once the architecture finishes inferring all beliefs for the current situation,
it retrieves skills with matched conditions that are known to achieve its goals.
Upon selecting one of the relevant skill instances as its current intention, the
agent executes this skill instance in the world, thus changing the environment
and its subsequent perceptions. This cyclic operation continues until the agent
achieves all its goals.
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Fig.1: Block diagram of the extended ICARUS architecture featuring an inte-
grated long-term event memory. The memory system forms episodes by combin-
ing the agent’s perceptions, beliefs, and actions and supports cue-based retrieval
into working memory.

2.3 Hybrid Event Memory

The ICARUS architecture includes a long-term event memory [24]. This memory
serves as a case base for the agent’s experiences, storing propositional representa-
tion of states that occurred during execution as episodic cases. But the memory
system also adds generalized schematic cases over those at the same time, which
serve as propositional templates that aggregates cases in a probabilistic manner.

This memory system is a hybrid, because it represents a middle ground be-
tween the two predominant philosophical perspectives on event memory: the
causal theory [23] and the simulation theory [28]. The causal theory supports
memory systems that represent and maintain discrete, or episodic, events, and
thus act like an archive of specific cases. Conversely, the simulationist perspec-
tive relies principally on a generalized schema to generate recollections through
a reconstructive process. Similarly, our hybrid event memory system stores both
episodic and schematic cases in a hierarchy, unifying causal and simulationist
views into an elegant theory that exhibits the advantages of both while avoiding
their shortcomings.

The long-term event memory forms cases by translating perceived objects
and inferred beliefs from a relational description to a propositional one. Figure 2
shows how the architecture encodes a state where the agent is holding a stick and
a piece of coal and a feather are visible in the scene. The current state includes
some perceived objects like self, hotbar, feather, and coal, as well as some
beliefs, shown in capital letters, that the agent inferred from the observed objects
and their attributes. This state is then represented in a dependency graph shown
below, which depicts the contents of the episodic case. Relational predicates are
shown in grey, while perceived objects and their attributes are shown in blue.
Each episodic case is a directed acyclic dependency graph where the nodes in the
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Sample Percepts and Beliefs from the Minecraft Domain

Relational Observations of the State
((self selfl x 0 y 0)
(hotbar stick-iteml type stick location 0 size 1)
(feather featherl x 0 y 4)
(coal coall x 4 y 4)
(RESOURCE FEATHER1)
(ON-VERTICAL-AXIS FEATHER1l SELF1)
(FRONT-OF FEATHER1 SELF1)
(CARRYING STICK-ITEM1 ~TYPE STICK ~LOCATION 0 ~SIZE 1))

¥

Episode Case Dependency Graph

@ @ D @
on-vertical-axis  front-of  right-of  front-of

@
resource resource carrying
self feather coal hotbar
e & 6 & ¢ o ¢ o
X y X y X y type loc size

Fig. 2: Representing a relational observations as a dependency graph. For expo-
sitional simplicity, this figure does not show existing edges from the belief nodes
to perceptual attributes.

graph contain their observed values from the environment. This graph structure
is an episode in the system that represents a single observed state of affairs.

In contrast, schemas are contertually scoped cases that aggregate multiple
episodes and other schemas together in a probabilistic manner. They encode
Bayesian networks that specify the joint probability distribution of a set of cor-
related variables, X. This joint distribution can be written as:

p(x1, T, oy T) = p(x1|T2, T3, ooy T )D(X2| T3, Tay ooy Ton) o DT

m—1 1
~ o) [] plei|Pa,), M

t=1

where Pa,, are the parent nodes of x;. The advantage of using Bayesian networks
to encode schematic cases comes from their systematic reliance on conditional
independence assumptions. They are the key to compactly representing complex
joint distributions since they reduce the number of parameters necessary to
encode the full joint probability distribution.

2.4 Event Memory Processes

As shown above, ICARUS ’ long-term event memory stores and maintains episodic
and schematic cases in a probabilistic taxonomic hierarchy such that similar el-
ements are grouped together separate from dissimilar ones. Episodic cases exist
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Fig.3: Top-down insertion procedure for adding a new episode to the event
memory. Each insertion step involves performing structure mapping to assess
the similarity between the new episode and existing elements, then recursing
down the lowest cost branch.

at the leaf nodes in the hierarchy. On top of these are progressively more general
schematic cases that summarize their children in a probabilistic manner. The
top-level case in the hierarchy encompasses all the agent’s experiences and is
the most diffuse. In this way, the event memory system maintains a general-to-
specific taxonomy. This taxonomy, however, not only serves to index episodes,
but also to store a full-fledged probabilistic model in each intermediate schema
that supports Bayesian inference. Unlike other CBR systems that use Bayesian
networks, schematic cases in our system have a locally defined context via de-
scendant paths in the hierarchy and therefore are not an amalgamation of general
domain knowledge.

Within cases stored in the memory system, the boundary between problem
and solution is not defined a priori, and this instead depends on the inputs passed
to event memory processes for episodic insertion and cue-based retrieval. The
former, depicted in Figure 3, occurs in an incremental manner, incorporating
new episodes as they are encountered. On each cycle, the ICARUS agent gener-
ates an episode including its perceptions and beliefs. The system then uses the
best-first search to insert the episode top-down through the event hierarchy. At
each insertion step, ICARUS assesses similarity between the new episode and the
existing event memory elements. By doing this for each element along the in-
sertion path of the new episodic case, the system makes analogical comparisons
between the new case and existing event memory elements.

Once the system identifies the best-matching event memory element at one
level, it merges the new episodic case into the element, according to the corre-
spondences found during the similarity computation, and updates the probability
distribution in the matched element. Then, insertion continues down the subtree.
The insertion procedure completes whenever the new episode becomes a child of
the current case at the root of the subtree, or if the new episode merges with a
pre-exisitng case in the hierarchy. The end result of this insertion process is an
updated event memory hierarchy with the new example incorporated.
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The retrieval process sorts a retrieval cue through the hierarchy employing
the same best-first search mechanism as insertion. Instead of adding the re-
trieval cue to the memory at the end of the search, however, it returns the case
that matches best to the cue. Once the system obtains the best-matching event
memory element (typically a schematic case), it can use that to perform state
estimation through probabilistic inference.

Given the retrieved case, the event memory system takes the observed values
from the retrieval cue and sets them as observed variables in the correspond-
ing schema. This creates a problem-solution pair suitable for state estimation
such that the problem part corresponds to the observed variables, and the so-
lution part corresponds to the remaining hidden variables, which have not been
observed, whose values must be inferred based on the given observations. The
probabilistic inference engine in the agent’s long-term event memory system is
a sum-product message passing algorithm that operates over an approximation
of the network, known as a Bethe cluster graph [18]. The system outputs the
posterior marginal distribution of each variable given the supplied evidence.

3 Extended Event Memory for State Estimation

In prior work, our event memory system used table-based representations for en-
coding conditional probability distributions (CPDs) contained in the cases. This
was done to ensure efficient retrieval of information by providing random access
to the data. This look-up time efficiency, however, came with the disadvantage
of imposing high costs on the space requirements of the system. As the dimen-
sionality of the tables increased linearly, the space requirements to encode their
distributions grew exponentially. Additionally, the large number of parameters
in table CPDs burdened the probabilistic inference steps required for performing
state estimation. In this section, we describe our latest extensions to the memory
system that address these problems.

3.1 Rule-Based Conditional Probability Distributions

The need to have both space- and time-efficient event memory processing for
storage and estimation motivated a switch from table-based representations to
rule-based ones. Intuitively, a rule in a rule-based conditional probability distri-
bution is a tuple whose left hand side is an assignment to some of the variables
in the distribution, denoted as Scopelp], while the right hand side specifies the
probability for that variable assignment. Rules may be understood as slices of
the conditional probability distribution having equal probability. Two rules are
compatible if the intersection of their left-hand side variables share the same
assignments. From this notion of rules, we can formally define rule-based condi-
tional probability distributions below.

Definition 1. A rule-based CPD P(X|Pax) is a set of rules R such that:

— For each p € R, we have that Scope[p] C {X} U Pax.
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— For each assignment (z,u) to {X }UPax, we have one rule (c;p,i) such that
c is compatible with (x,u). In this case we say that P(X = z|Pa, =u) =p
and has occurred i times.

— The resulting CPD P(X|U) is a legal CPD in that

> P(zfu) = 1.

Definition 1 is taken from [18] with the modification that we add count
information to the rule. When interpreting the assertions from Definition 1, it is
useful to imagine rules serving as local coverings of the table-based CPD. The
first item from the definition states that rules must be defined over a subset of
variables in the CPD. Next, the second item asserts that each rule represents
a slice of the distribution, defined by variables in the left-hand side of the rule,
such that each slice covers a region in the table-based CPD. Then, the third
statement claims that the sum of each row in the CPD must equal to 1.

With this in mind, it becomes clear that the rule-based representation is
a powerful abstraction for achieving lossless compression of table-based CPDs
by exploiting their local structure. To illustrate this point, consider the exam-
ple shown in Table 3 depicting the notional conditional probability distribu-
tion P(A|B, C, D). Table 3a shows the table CPD for this distribution contains
24 = 16 parameters. By encoding this distribution as a set of rules, as shown in
Table 3b, we reduce the space requirements to store the table in half, generating
only eight rules. Key to this improvement lies in the fact that one rule can cover
multiple slots in the table. For example, for Rule 0, the value of D is ignored
allowing it to cover the cases when D = 0 and D = 1. Additionally, the rule set
also contains rules whose counts equal zero. Because these are rules for which
outcomes were never observed, we can safely drop them from the rule set to
obtain the minimal number of rules, as shown in Table 3c. If there is a query
about one of the dropped rules, we can recover the appropriate value from the
default distribution, [1,0]%.

The ability to only store rules for which outcomes have been observed is a
boon for building Bayesian networks, captured inside cases, in incremental fash-
ion. As examples are encountered, the architecture can efficiently flesh out the
CPDs. In contrast, a table-based representation must reserve space even for out-
comes which have not, and may never occur during an agent’s operation. This, in
combination with exponential growth of table CPDs makes it apparent that they
are not appropriate for supporting agents in complex structured environments,
and instead rules should be preferred.

3.2 Similarity via Analogical Reasoning for Insertion and Retrieval

The insertion and retrieval processes rely on structure mapping [9] to guide
search through the event memory hierarchy. To efficiently solve this problem,

4 In Table 3a, rows with distribution [1, 0] have not been observed. For the purpose of
exposition, such rows were chosen arbitrarily.
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Table 3: Encoding table and rule-based CPDs

(a) Table CPD (b) Rule-based CPD (c) Minimal Rules

P(A|B,C, D) P(A|B,C, D) (A|B C, D)
A 9 (a'p°ct;2/3,3) 0 (a*b’ct;2/3,3)

D C Bf|a® af ' (a5 1/3,3) 1 (a®°c';1/3,3)

2 {a*brctdt;1,1) 2 {a* blcld1,1,1>

L1 0 3 (a"bctdb;0,1) 3 (a"btctdh;0,1)

v 1 0 4 {a'b'c*d;0,0)

d® ¢t v°|[1/3 2/3 5 (a®b'ctd?;1,0)

b1 0 5 {a'c;0,0)

dl CO bO 1 0 7 <a000;170>

d' b1 0

d ¢t v°|[1/3 2/3

dtct vt o 1

ICARUS converts it to a local optimization problem and applies simulated anneal-
ing to obtain matches in polynomial time. Simulated annealing returns a solution
by iteratively making random matches between nodes in the new episode and
existing memory element nodes. On each iteration, the event memory generates
a partial solution and scores it using the Bayesian Information Criterion [33].

Additionally, the architecture also places extra constraints on the structure
mapping process to enable it to quickly find solutions. These are:

1. Structure mapping is performed in top-down manner;
2. Matched nodes must share the same type; and
3. Candidate match pairs must have the same matched parents.

The structure mapping procedure terminates whenever the simulated anneal-
ing temperature arrives at zero. At that point, the architecture returns the best
solution to the upstream process, which is either insertion or retrieval.

4 Empirical Evaluations

To evaluate our system’s ability to build its case base from experience and use it
for state estimation, we programmed an ICARUS agent for Minecraft, a popular
sandbox-style video game developed by Mojang Studios®. This game presents
a unique and challenging environment for artificial intelligence research. It al-
lows players to explore an expansive world and manipulate their surroundings
through the use of blocks. The game’s open-world environment, coupled with its
complexity, requires artificial agents to possess high-level decision-making skills
and faculties for handling partial observability to navigate and accomplish goals.

To facilitate the agent’s efficient operation, we assumed a flat world where the
agent only perceives objects on the floor and limited the agent’s inventory slots

® We use Minecraft (https://www.minecraft.net/) with its agent interface, Malmo [13]



Hybrid Event Memory as a Case Base for State Estimation 11

to three. Nonetheless, the agent could infer spatial relations such as (left_of 7a
?b) and (right_of 7a 7b) based on these simplified perceptions, maintaining
the generality of our experiments. In addition, we simplified the programming
of our agent by having it issue only discrete movement commands through the
interface. Our agent can choose to move forward, backward, and strafe by one
step, as well as turn left or right by 90 degrees.

In our experiment, the agent operated in a 7 x 5 room with the objective of
making a torch from component resources found in the room. A different resource
existed at each corner in the room, and the agent had to walk to the appropriate
ones to fashion the item that satisfied its goal. The recipe for making a torch
required one item each of stick and coal. We generated 24 different maps by
permuting the locations of the resources in the room. We also gave the agent
two skills each for making a torch, resulting in 48 different possible scenarios. In
each scenario, the agent followed a recipe for crafting a torch. During the course
of execution, we recorded the agent’s observations and beliefs about the world,
thus generating an execution trace. This enabled us to create a rich dataset of
examples from which to build the agent’s event memory.

Given this dataset, we split it into training and testing partitions, and per-
formed 10-fold cross validation to build the agent’s event memory by inserting
the execution traces sequentially. Then in test, we compared our agent’s ability
to perform state estimation under various partial observability conditions. Un-
der these conditions, the agent received a subset of the perceptual information
sensed from the environment, then had to elaborate all missing perceptions, if
any, and infer all beliefs since these were never directly perceived.

In Figure 4a, we present the average cycle duration across 10 folds as the
ICcARUS agent inserts the observation traces through its event memory. The fig-
ure shows that time it took to insert the examples moved from around three
to five seconds initially and progresses down to less then one second at the end
of the trace. We believe that because the initial state is similar across the ob-
servation traces, inserting them into the event hierarchy progressively expanded
the same subtree. As a result, the insertion time for these early observations
was comparatively higher than the later observations because the event memory
system needed to complete more insertion steps. In contrast, later observations
which had more distinguishing features, consequently, wound up in more shallow,
less developed parts of the hierarchy resulting in faster insertion times.

Figure 4b compares the number of parameters needed to encode the case
distributions at the top-level of the hierarchy by table- and rule-based CPDs. In
the figure, the y-axis is the log transform of the number of parameters, while the
x-axis shows the percentage of traces observed in the fold. The trends show an
order of magnitude savings for rule-based CPDs meaning that this representation
scales nicely to highly structured domains.

Next, we present training performance results for state estimation in Figure 5.
Figure 5a measures the local likelihood of the model, meaning we measure the
likelihood of each individual state variable in the model, then report the average.
By comparison, Figure 5b measures the average likelihood of the joint assign-



12 David H. Ménager and Dongkyu Choi

Event Memory Processing Duration over Time Scaleability Comparison Between CPD Types

fold CPD Type
551 — Rule CPD
Table CPD

Time (s)
O N U s wWN RO

+# Parameters (log)

Percent Trial Complete Percent Fold Complete

(a) Average time required to process state (b) Comparing space requirements of
in ICARUS cognitive cycle. rule-based CPDs with table-based CPDs.

Fig. 4: Insertion performance results of the long-term event memory.
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Fig. 5: Training performance results.

ment of the state variables in the model. During training, the system obtained
high marks, but differences in performance arose under the validation set. The
local likelihood measure remained high, but a significant drop in performance
is observed for the likelihood. This difference in performance occurred because
the likelihood measure is conjunctive. This means that if the model assigned low
probability to one of the ground truth state variables, it significantly decrease
the likelihood score of the model because the low probability value is multiplied
to the other probability assignments in the network. Despite this, the likelihood
of recovering the ground truth state using the retrieved case significantly exceeds
random chance because the space over which the Bayesian network is defined
covers, on average, 3.07 x 10%? number of outcomes.
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Fig. 6: Likelihood measures under various partial observability conditions.

During test, the ICARUS agent performed state estimation under various
partial observability conditions. When the agent had complete observations of
the perceived objects both likelihood measures obtained their maximum results,
with the local measure achieving greater than 90% performance and the joint
measure recovering the ground truth state with greater than 40% likelihood. The
performance fell sharply when the agent could not perceive 10% of the perceptual
environment, but gracefully degraded beyond that point. For the local likelihood,
performance did not drop below 60% on average, which suggests that the state
estimation was largely correct with a moderate amount of uncertainty. This
uncertainty, however, proved costly for the joint likelihood because it reduced
the likelihood of the model generating the ground truth state down to 0% by
the time the agent could only observe 10% of the perceptual environment.

5 Related Work

In addition to the previous work from the case-based reasoning literature that
we discussed earlier in Section 1, there are other groups of work that our system
shares insights with. Most importantly, our event memory system descends in-
tellectually from incremental concept formation systems like COBWEB, TRES-
TLE and LABYRINTH [6, 8,22, 38]. Such systems gradually acquire knowledge
about a problem domain by clustering examples, as they are encountered, into
probabilistic hierarchies. Incremental concept formation emphasizes the compo-
sitional nature of knowledge, continual learning, and improvement in predictive
performance over time. The event memory system in ICARUS differs from these
mainly in that nodes in the hierarchy are Bayesian networks, and it is capable
of scaling to a broader range of inference tasks.

Event memory has been modeled as declarative episodic memory in another
cognitive architecture, SOAR [19]. SOAR’s episodic memory stores contents of the
agent’s working memory in a flat storage container. It supports insertion and cue-
based retrieval of content to aid in other cognitive tasks such as problem solving



14 David H. Ménager and Dongkyu Choi

[30] and anticipatory thinking [14]. Unlike ICARUS , episodes in SOAR’s episodic
memory cannot serve as predictive models of the world. ACT-R and CLARION
have declarative memories, but do not make clear distinctions between semantic
and episodic content.

6 Future Work and Conclusions

Future research extending this work could include inference over continuous- and
discrete-valued variables, insertion strategies that efficiently assess the similarity
between related event memory elements, and learning approaches for acquiring
conceptual knowledge that enable the agent to describe and categorize states.
Pushing the research in these directions can significantly enhance the efficiency
and accuracy of state estimation in event memory-enabled agents across a wide
array of domains, and we hope to report our results in a near future.

State estimation is a crucial problem in various fields of AI, and the extended
ICARUS cognitive architecture offers a powerful approach to it, which relies on
its event memory system storing and maintaining Bayesian network represen-
tations. Studies have shown the benefits and utility of Bayesian networks, but
challenges still remain when dealing with complex structured domains. Our work
represents a step towards addressing these challenges by integrating our Hybrid
Event Memory System into the ICARUS cognitive architecture to create an event
memory-enabled agent capable of learning probability distributions of the state
space as Bayesian networks in an online manner. This research opens up new
avenues for exploring the integration of data-driven techniques with Case-Based
Reasoning and for unifying theories of cognition.

Acknowledgments

This research is supported in part by Agency for Science, Technology and Re-
search (A*STAR) under its Human-Robot Collaborative AI for Advanced Man-
ufacturing and Engineering (Award A18A2b0046). Any opinions, findings and
conclusions, or recommendations expressed in this material are those of the
authors and may not necessarily reflect the views of the agency. No official en-
dorsement should be inferred.

References

1. Aamodt, A., Langseth, H.: Integrating bayesian networks into knowledge-intensive
cbr. In: AAAT Workshop on Case-Based Reasoning Integrations. pp. 1-6 (1998)

2. Anderson, J.R., Matessa, M., Lebiere, C.: ACT-R: A theory of higher level cog-
nition and its relation to visual attention. Human—Computer Interaction 12(4),
439-462 (1997)

3. Barfoot, T.D.: State estimation for robotics. Cambridge University Press (2017)

4. Choi, D., Langley, P.: Evolution of the ICARUS cognitive architecture. Cognitive
Systems Research 48, 25-38 (2018)



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

Hybrid Event Memory as a Case Base for State Estimation 15

Fikes, R., Nilsson, N.: STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence 2, 189-208 (1971)

Fisher, D.H.: Knowledge acquisition via incremental conceptual clustering. Ma-
chine Learning 2(2), 139-172 (1987)

Flogard, E.L., Mengshoel, O.J., Bach, K.: Creating dynamic checklists via bayesian
case-based reasoning: Towards decent working conditions for all (2022)

Gennari, J.H., Langley, P., Fisher, D.: Models of incremental concept formation.
Artificial Intelligence 40(1-3), 11-61 (1989)

Gentner, D.: Structure-mapping: A theoretical framework for analogy. Cognitive
Science 7(2), 155-170 (1983)

Hausknecht, M., Stone, P.: Deep recurrent g-learning for partially observable
MDPs. In: 2015 AAAI Fall Symposium Series (2015)

Horn, A.: On sentences which are true of direct unions of algebras. Journal of
Symbolic Logic 16(1), 14-21 (1951)

Hu, X., Li, S.E., Yang, Y.: Advanced machine learning approach for lithium-ion
battery state estimation in electric vehicles. IEEE Transactions on Transportation
Electrification 2(2), 140-149 (2015)

Johnson, M., Hofmann, K., Hutton, T., Bignell, D.: The Malmo platform for artifi-
cial intelligence experimentation. In: Proceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence. pp. 4246-4247 (2016)

Jones, S., Laird, J.: Anticipatory thinking in cognitive architectures with event
cognition mechanisms. In: Cognitive Systems for Anticipatory Thinking at the
AAAI Fall Symposium (2021)

Kebriaei, H., Rahimi-Kian, A., Ahmadabadi, M.N.: Model-based and learning-
based decision making in incomplete information cournot games: a state estimation
approach. IEEE Transactions on Systems, Man, and Cybernetics: Part A Systems
and Humans 45(4), 713-718 (2014)

Kim, Been an Rudin, C., Shah, J.A.: The bayesian case model: A generative ap-
proach for case-based reasoning and prototype classification. Advances in Neural
Information Processing Systems 27 (2014)

Kim, D., Park, M., Park, Y.L.: Probabilistic modeling and bayesian filtering for
improved state estimation for soft robots. IEEE Transactions on Robotics 37(5),
1728-1741 (2021)

Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-
niques. MIT Press (2009)

Laird, J.E.: The Soar Cognitive Architecture. MIT Press, Cambridge, MA (2012)
Laird, J.E., Newell, A., Rosenbloom, P.S.: Soar: An architecture for general intel-
ligence. Artificial Intelligence 33(1), 1-64 (1987)

Leake, D., Crandall, D.: On bringing case-based reasoning methodology to deep
learning. In: Watson, I., Weber, R. (eds.) Case-Based Reasoning Research and
Development. pp. 343-348. Springer International Publishing, Cham (2020)
MacLellan, C.J., Harpstead, E., Aleven, V., Koedinger, K.R.: Trestle: Incremen-
tal learning in structured domains using partial matching and categorization. In:
Proceedings of the Third Annual Conference on Advances in Cognitive Systems
(2015)

Martin, C.B., Deutscher, M.: Remembering. The Philosophical Review 75(2), 161
196 (1966)

Ménager, D.H., Choi, D., Robins, S.K.: A hybrid theory of event memory. Minds
and Machines pp. 1-30 (2021)

Ménager, D.H., Choi, D., Robins, S.K.: Modeling human memory phenomena in a
hybrid event memory system. Cognitive Systems Research (2022)



16

26.

27.

28.

29.

30.

31.

32.
33.

34.

35.

36.

37.

38.

39.

David H. Ménager and Dongkyu Choi

Ménager, D.H., Choi, D., Floyd, M.W., Task, C., Aha, D.W.: Dynamic goal recog-
nition using windowed action sequences. In: Workshops at the Thirty-First AAAI
Conference on Artificial Intelligence (2017)

Mengshoel, O.J., Darwiche, A., Uckun, S.: Sensor validation using bayesian net-
works. International Symposium on Artificial Intelligence, Robotics, and Automa-
tion in Space (2008)

Michaelian, K.: Mental Time Travel: Episodic Memory and Our Knowledge of the
Personal Past. MIT Press (2016)

Nikpour, H., Aamodt, A.: Inference and reasoning in a bayesian knowledge-
intensive cbr system. Progress in Artificial Intelligence 10, 49-63 (2021)

Nuxoll, A.M., Laird, J.E.: Extending cognitive architecture with episodic memory.
In: Proceedings of the Twenty-Second National Conference on Artificial Intelli-
gence. pp. 1560-1565 (2007)

Pearl, J.: Fusion, propagation, and structuring in belief networks. Artificial Intel-
ligence 29(3), 241-288 (1986)

Richter, M.M., Weber, R.O.: Case-based reasoning. Springer (2016)

Schwarz, G., et al.: Estimating the dimension of a model. The Annals of Statistics
6(2), 461-464 (1978)

Seo, T., Bayen, A.M., Kusakabe, T., Asakura, Y.: Traffic state estimation on high-
way: A comprehensive survey. Annual Reviews in Control 43, 128-151 (2017)
Shivakumar, N., Jain, A.: A review of power system dynamic state estimation
techniques. In: 2008 Joint International Conference on Power System Technology
and IEEE Power India Conference. pp. 1-6. IEEE (2008)

Sukthankar, G., Geib, C., Bui, H.H., Pynadath, D., Goldman, R.P.: Plan, Activity,
and Intent Recognition: Theory and Practice. Newnes (2014)

Sun, R.: Anatomy of the mind: exploring psychological mechanisms and processes
with the Clarion cognitive architecture. Oxford University Press (2016)
Thompson, K., Langley, P.: Concept formation in structured domains. In: Concept
Formation, pp. 127-161. Elsevier (1991)

Zamzam, A.S., Sidiropoulos, N.D.: Physics-aware neural networks for distribution
system state estimation. IEEE Transactions on Power Systems 35(6), 4347-4356
(2020)



